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Z. U. A, Warsi , C. W, Mastin and J. F. Thompson -
Abstract :
’“~\§ The proposed set of equations (refer to the enclosed papers for %
‘ ™
detail) which generate a series of surfaces between a given inner and g
outer body, have been programed on CRAY-1l. An extensive program test- ﬁ
ing has been carried out to make the program usable for general body -
=

shapes. For example, two methods have been developed to establish the
correspondence between the points of the inner and outer surfaces, a :

method has been developed to find the first partial derivative of

X, y, z with respect to the coordinate along the surface. All these

¥
Fayy

methods are based on sound mathematical basis and have not been chosen .

Ank.

arbitrarily. Work has been started on complicated multibody config-

urations, such as the wing-body combination. Here the interfacing of
coordinates having sufficient derivative smoothness 1s the most impor-
. - tant problem.

T" In the period of this report, a thorough analysis on all sorts of ~
[ mathematical models for coordinate generation has been completed. This
. analysis uncovers those differential relations which must invariably q

be satisfied by the metric coefficients no matter which method is used “‘f? -~
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to generate the coordinates. The final computational code to be
developed in the current year of effort is expected to reflect all
these achievements for practical utilization. <— "~

Previously reported examples of surface grid construction have
dealt with simple quadratic surfaces. To test the versitility of the
method, our program has been modified to accept the surface data
generated by Craidon [l]+ Aside from the more complex computational
region, which gave rise to additional coordinate singularities, the
grid generation procedure was unchanged. That is, the grid was
generated using cubic splines with an elliptic system used for smoothing.
Several coordinate surfaces for the region about a spline generated
wing-fuselage configuration have been plotted. A plot of that con-

figuration is given in Figure 1(a). Figure 1(b) illustrates the

continuation of coordinate lines from the body to the outer boundary.

Views of coordinate surfaces from the upstream direction are also included.

Figure 1(c) is a surface surrounding the aircraft, and Figure 1(d) is

a surface intersecting the trailing edge of the wing.
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C. B. Craidon, "A Computer Program for Fitting Smooth Surfaces to an
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BASIC DIFFERENTIAL MODELS FOR COORDINATE GENERATION

Z. U. A. warst¥

Department of Aerospace Engineering, Mississippi State University, Drawer A,
Mississippi State, Mississippi 39762, USA
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§1. INTRODUCTION

This paper examines in detail the analytical aspects of three distinct
methods of coordinate generation based on partial differential eguations,
in either two or three dimensions. The first method is based on the Gauss
equations of a surface under the constraint of the Beltrami's second order

equations. These equations have been structured in such a way that an

automatic connection is established between the succeeding generated surfaces.

The second method is a re-examination of those equations which are based

on the inhomogeneous Laplace equations. This analysis reveals a new form
for the terms which play a role in the concentration of coordinate lines

and in the adaptive coordinate system generation. The third method pertains
to a set of equations in the metric coefficients which is obtained by setting
the Riemann‘'s curvature tensor to zero.

The problem of generating spatial coordinates by numerical methods is a
problem of much interest in practically all branches of engineering and
physics. At present a number of techniques are under active development for
the generation of two and three~-dimensional coordinates in the regions
between two or a number of arbitrary shaped bodies. Among these efforts
two easily discernable groups can be formed, (i) the methods based on
elliptic PDE's, and (ii) algebraic methods. 1In the first group, a set of
inhomogeneous Laplace equations is taken as the basic generating system.

These equations are then inverted and solved for the Cartesian coordinates.
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Some very useful results based on this line of approach started with the
work of W1nslow1, have been obtained by Thompson, et al. (TTM method) ,
Steger, et a1.3, Yu4, Gravess, and Thomass. For an extensive bibliography
refer to Thompson, et al.7 In the second group of methods, the grid points
in space are generated by interpolating and blending functions starting
from the given boundary data. This line of approach has been followed by
Eisemana, Smith, et a1.9, Ericksonlo, and others.

In this paper we consider only the analytical aspects of the differential
equation's approach to.coordinate generation. The main effort here is
to present only those results which are of permanent interest to the workers
in the field of coordinate generation. The proposed equations in any one
of the groups have not been arbitrarily selected to generate some sort of
coordinates. These equations are in fact those which every numerically
or analytically generated coordinatzs must satisfy. The reader will
find that some large portions of sections 3 and 5 have new results and
are based on the work by Warsill'lz. In sections 3 and 5 a number of
exact solutions have been obtained which can be used to provide a testing

ground for different numerical schemes.

§2, NOTATION AND BASIC FORMULAS
In this paper any general curvilinear coordinate system will be denoted
by a superscript index notation, such as x*. However, when an expression

has been expanded out in full and there is no need for an index notation then

we shall use the symbols

The rectangular Cartesian coordinates (x, y, 2) which determine the position

vector r, i.e.,

r =r(x,y,z)

will be denoted by the subscripted variable X0 where X, =X, X, =y,

X, = 2Z.

3
Two similar indices, one appearing as a subscript and the other as a

superscript will always imply summation over the range of index values; e.g.,

i 1 2 3
A,..B =A B +A B + A_.B
13 13 23 33 R
In an Euclidean space (E° or E”), the covariant base vectors a, are given
by

R S i
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a; = —7 (1a)
ox
sO that
ST - T (1)

<2 .n

where a variable subscript will denote a partial derivative. Using the

Riemannian metric, the formula for the length element ds is given by

2 i. 3
(ds)” = g; jax ax? ,

where, because of the Euclidean nature of the space the metric coefficients

are given by

or or

.. = a,*a, = ——/— = —— (2a)
913 -+ -] ax* ax?

The coefficients gij = gji are the covariant components of the metric tensor.
ij

The contravariant components g - are related with g_j through the equation
i

i3 = &)
9 "9y Gk (2b)

where Gi (the Kronecker deltas) are the mixed components of the metric tensor.
Using (2b) we define the contravariant base vectors as

al = glJaj . (2¢c)

The quantities g and g defined as

g = det(gij) ' (3a)
g = det(gtd) , (3b)
are related as
g;=1- (4)

For a three-dimensional space

2 2 2
9 = 917955933 * 29),9;3953 = (9530 93y ~ (9;3) 955 = (9),) 935- (5)
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Introducing the quantities,

2
Gy = 955933 = (93)
2
Gy = 917933 ~ (9;3)
G, = - (g.°
3 = 91192 7 Y907 ¢
(6)
G4 T 93393 ~ 912933
Gg = 932923 ~ 9139, ¢
G = 912913 ~ 923911 ¢
we have, on solving Egs. (2b),
11 22 33
g =6/9,9 =6G,/9 ,9 =G6,/g, (7a)
1 2 3
12 13 23
g = G4/g e g = Gs/g . g = Gs/g . (7b)

The space Christoffel symbols of the first and second kind respectively
are given by

Bgik ngk °g, .

.. 1 ij )
[ij,k] = S(—= + —— - ) (8a)
2030wt ot

L k2, ..

rij =g [ij,k] . (8b)
Using (8b), we have
da,

-2 = F%_ a, . (8¢c)

BxJ i3 -

In the case of a two-dimensional surface embedded in a three-dimensional
space, we shall use the Greek indices a, B, etc. (with the exception of v)
with the stipulation that they assume only two values. Thus the surface

Christoffel symbols of the first and second kind are respectively given by

1,995 %985 %948,
[0515] = 5'( B + a - s
ox ax ax

(9a)
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T
where for the purpose of clarification we have used the symbol T (upsilon)
to denote the surface Christoffel symbols of the second kind in (9b) and
nct by T as in (8b).
In the process of formulation of a 3D coordinate generation problem, it
is helpful to imagine the coordinates of a point in space as the intersection
of three distinct surfaces on each of which one coordinate is held fixed.

Using the convention of a right-handed coordinate system xl, xz, x3 or

(v)
a

£, n, L, we introduce the notation 3 s a surface on which the coordinate

\V
x = const., such that

1l implies that (x2,x3) are in the surface,

\) =
. . 3 1l .
v = 2 implies that (x”, x”) are in the surface,
i . . 1 2 .
v = 3 implies that (x”, x") are in the surface.
Thus, the unit normal vector on the surface 2(\)) is
™ (xyxr,)/|r, xx,| (10)
- o g a gl
where
1
v=1l:a=2, =3 (surface x* = £ = const.) ,
2
v=2:a=3, B=1 (surface x = n = const.) , (11)
3
2 (surface x™ = [ = const.)

<

"
w

R

"
[
™
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All other quantities and formulas which appear in the rest of the paper have

1
been defined where they first appear. Refer also to Warsi12 and Eisenhart 3.
§3. GENERATING DIFFERENTIAL EQUATIONS BASED ON GAUSS EQUATIONS
In this section our aim is to develop a method11 for the generation of
3D coordinates wherein a series of surfaces are generated on each of which
two previously designated coordinates vary while the third coordinate remains

fixed. This method must also be structured in such a way that the variation
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of the third coordinate from one generated surface to the next is fully

reflected in the system of generating equations. With this aim, we start

from the equations of Gaussl3'14

=1 v +b ' n™M

TaB aB -6 aB- ‘ (12)

where the variations of a, B and the range of 6 with v follows the scheme in

(11). The quantities ba are the coefficients of the second fundamental

8
form of the surface. Since on the surface xv = const., the vector n(v) is

orthogonal to the surface vectors Lg o hence

: b - n(v).r

B n Y8 ° (13)

To fix ideas, we envisage a surface which is formed of the coordinate lines
£, n and on which [ = const. Dropping the index v, Eq. (12) yields the

three equations

) ,
fgg = Tllfd + S? ' (14a)
r = T6 r. + Tn (14b)
En 126 -

= 'I‘(S r. + Un (14c)
Tan T f22T8 T VT

where the index 6§ now varies from 1 to 2, and

b, . (15)

T=b,.,.U=b,

S=by
Here n is orthogonal to both r. and tn, and the coefficients of the first
fundamental form of the surface are 911; 935 and 9,54 each evaluated at

{ = const. Obviously

2 2 2 2 2 2
= = + = . 6
91 x€+yg+zg ¢ 919 xéxn yiyn+z€zn ' 9y, = X +yn+zn (16)

If Eqs. (14) are considered as the first order partial differential
equations in r, and rn, then we must also consider the Weingarten equations

n BYy

g = bigd Ty (17a)

NSO T O S SR T T 2. :  a a_a_a PRSP P PP PP F NP I N ST AP S Y P

Ty Ty Ty T L R o W R L W L T T T T e T TR e T T T e T e T e e

Ny

R \Y .
which for a surface x = const., are given by

.

P

Ny

by S

PUPERE APSTTWE ¥ SIPE N SIS

o

SRR T
e laa A 0 AT na

C ‘.' .,' o
D B -SRI R LY

R

A




a8 .

T TR AW
T —— T T T T T

By
- - ) 17b
AT Thygd Ey (17b)

If now 9117 9127 Ipo¢ bll’ b12’ b22 are arbitrarily prescribed then the set of
Eqgs. (14) and (17), which represent fifteen scalar equations for the nine

scalars (rg ' rn » n), form an overdetermined system. Consequently one

-~

has to impose the compatability requirements

(r ) = (r )
.af y oy 8

for all values of a, B, vy from 1 to 2. This operation leads to the Mainardi-
Codazzi equations and the theorema egregium of Gauss which are higher order
equations and are not very suitable for the purpose of numerical solution.

We therefore return to the Gauss equations (14) and ask the question: 1Is

it possible to develop a method which centers around the Gauss equations and
is simple to implement numerically? The answer is in affirmative if we

manipulate Egs. (14) as follows.

Multiplying Eg. (l4a) by Iopt Eq. (14b) by —2g12 and Eq. (l4c) by 9,
and adding the three equations, we get

£f = '[(Azg)fg + (Azn)fn] Gy

+ (9228 - 2g12T + gllu)? ‘ (18)

where £ is the second order differential operator,

£ 92%¢ = 2912%n * 9110 ¢

and A2 is the second order differential operator of Beltrami. For any surface

x’ = const., (refer to the scheme in (11)),

(gBBBOl - gQBBB)}

1
+ aﬁ{———-(gaaaa - gaeaa)}] . (19a)

In particular for the surface { = const. we drop the enclosed superscript and
write

NI ARy
—a

— o wwo-
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8, = == (3, (== (9,2, - 9,,3)))
/G, G n
3 3
+ 3 (g 2, = 9,901 (19b)
n G- 11 12 °¢
3
It is easy to show by using the definitions of Tis, that !
1 1 1 1 .
8% 7 5, %912M2 7 92T T ) ;(202)
1 2 2 2 :
8pn = 63(2912T12 " 95T T I Te)) - ' (20b)

The system of Egs. (18) is still untamed and needs suitable constraints.

We must also somehow modify the terms S, T, U so as to bring the variation

of r with respect to ;, as was noted in the opening paragraph of this section.

To achieve this objective we consider the Egs. (8c) which for the surface

{ = const. are

1 2 3 :
Teg = Tafe * %yt ¥ : (21a)
r. =Tt r, 4 r + r : {21b)
-En 12°.¢ 2%n 12°¢ '’
= Pl r, + T ST, + r r (21c)
mm T T22%¢ Ln ¥t 1225 v

where all the derivatives with respect to [ are assumed to have been evaluated
at 7 = const. Taking the dot product of Egqs. (21) with n and comparing with
Eqs. (13), we find that

o
[}
<)
it
>
|

(22)

where
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A= E-fc = XXC + ch + ch . (23)
= - /G

X (ygzn ynza)/ G3 ‘

Y = (xnzg - xgzn)//E; ’ (24)

2= (xgyn - xnyg)//E; .

Thus, by using the forms in (22) we have established a connection with the
coordinate { which changes from one surface to the next. We now rewrite
Eq. (18) as

£r + [(Az‘;)f + (Az“)’fn]% =R, (25)
where
3 3 3
R = Mgy 5, = 29),T)5 + 95,170 - (26a)
Note that
R = G3(kl + kz) . (26b)

where k1 + k2 is twice the mean curvature of the surface.

§3.1 Fundamental generating system of equations

We now impose the following differential constraints on the coordinates
£ and n:

4,6 =0, : (27a)

Azn =0, (27b)
and take them as the fundamental generating equations for the coordinates in
a surface. It must be noted that Az is not a 2D Laplace operator except
when the surface degenerates into a plane having no dependence on z.

It is a well known result in differential geometry that the isothermic
coordinates in a surface satisfy Eqs. (27) identically. The isothermic
coordinates £ and n are those orthogonal coordinates in a surface which yield
932 = 931" "The situation here is parallel to the choice of the Laplace

equations V2£- o, 72n = 0 for the generation of plane curvilinear coordinates,

3 s SETTT A
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(e.g., the TTM methodz), which are also satisfied identically by the
conformal coordinates in a plane. This does not mean that the Laplace

equations are suitable only for the generation of conformal coordinates.

I GOPPTIRRIN

In fact, as is evidenced by the available body of numerical results, the

Laplace equations are capable of generating very general coordinates in

SA hd

arbitrary domains. Therefore, there looks to be no apparent reason why

AR

Egs. (27) should not form the basic generating system for general coordinates
in a surface. The analytical solutions given in this paper and the numerical q
results given in Warsi and Ziebarth15 support this contention. 1

Having chosen Egs. (27) as the generating system, the equation for the

determination of the Cartesian coordinates, viz., Eq. (25), becomes

Lr=nR . (28)

~ -

The three scalar equations in expanded form are

gzzxEg - 2g12xgn + 91%0 = XR , -+ {29a)

At b

- A

PR

gzzzgg - 2912z€n + gnzrm = ZR , (29¢)

where X, Y, Z, and R have been defined in Egs. (24) and (26). It must be

R SLRIN S WIS

noted that by cyclic permutations, equations similar to Egs. (29) can be
written for the surfaces n = const. and £ = const. However, only one set, -
e.g., Egs. (29), is sufficient provided that we are able to take care of the ¥
derivatives EC appearing in R.

The set of Eqs. (29) form a consistent set of equations for the deter-
mination of x, y, z under the prescribed boundary conditions.* For an

analytical understanding of these equations we open the differentiations of J
3

the metric coefficients in the formulae for rll'

3 3
le, and r22' Thus

F3 = ox

30a)
11 = g * Byge Y2 (30a

3 )
= 30b)
o= Xgn ¥ By + vz, o (

*Refer to cormment (i) at the end of the paper.
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nn nn nn

where

a = (Gsx6 + Gex + G3xc)/g '

B = (Gsyg + Gsyn + G3Yc)/9 ’
Y = (Gszg + GGZT’I + G3ZC)/9 .

Substituting Egs. (30) in (26) and after arranging the terms we can rewrite
Eqs. (29) as a quasilinear system,
id azx.
AQ;——G-J-g=o,i=1,2,3 (31)
ax ox

where xl = X, x2 =Yy, %3 =2 and there is an implicit sum on j from 1 to 3

and on a, 8 from 1 to 2. The coefficients A:J depend on the metric coefficients

B

9317 9327 952 and on those geometric quantities which depend only on the first

partial derivatives. For example

11 - 11
All = gzz(l-aAX) ' A12 = -2912(1—0AX) , etc., etc.

Equations (3l1) are three equations in three unknowns with two independent

variables. Refer to PetrOVSky16 for the classifications of such equations.

§3.2 Coordinate redistribution (concentration)

Before discussing the basic solution algorithm for the set of Egs. (29)
it is important to study the effect of a coordinate transformation which
produces a nonuniform distribution of coordinates. Again using indexed

quantities, let x* be another coordinate system defined as

with

aet (22, 40 .

axe

Using x, to mean either x, y, or z, we have

3
2p = X + By + Y2z ' (30c)

-t

s e
2l and

Y

L O
e P BN

1

————————— et ey M




=1, 2,3, (32a) r

2 2
3x; 3% agbapY ¥ %Y
0, B 8.7 8 B Y. B (32b)
ax dx 39X 9xX 9x 3x X’ ox 9x
Also,
a . B
aB _ geo axe axo . (32¢)
9x X
Now, Egs. (29) can be written in a compact form as
2
9 x, .
o8 " Gi X, (33) .
ax%ax 3 : ]
where :
= = = r
X, =X, X, =Y, X, =2, -
and ..‘-,
1 12 22 4
9 = 95/G3 ¢+ 9 =-9,,/6;,9 =9,,/6;. (34)
- 3
On coordinate transformation we have :31
31
- 2 - %2 _ = s
G, G,/ D), R=R©D), x, =X, , (35) 3
3
where L
g = axl ax2 _ ax’ ax’
ax ax’  ox° o ,
Thus Eq. (33) becomes
azx ax -
-aB . z + guo PYO N . __l! ii . (36)
ax"ax "wY g,
where
Y ax” ax8 azx" 9
P 6" -V o o B° (37)
v X 9x 9x 9x

.......

P Y Y P P P P e e PO
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Using equations similar to (34) in the new coordinate system, Eq. (36) yields

the equations

§ | -

£Lx = XR , (38a)

: £y = ¥R, (38b)
£z = zr , (38c)

where
' : £ =g .09z - 29, 9-= + g_.3-= + Pd= + Qd- 39
,Li ‘ ‘ = 922°¢E 912%5 * 9% * POp * Qo (39)
-
o T | - 1 -
;_' P =955P11 " 29)5F)5 * 91300 ¢ (40a)
r" .
- - 2 - 2 - 2
2 Q= 93211 7 2915P12 * I (aop)
- and i, §, 2, and R have exactly the same expressions as in (24) and (26a)

in the new coordinate system,

:0 is quite revealing particularly in those ¥

situations when it is desired to redistribute an already existing coordinate

The structure of the terms P

LA

F R EERAMIA
.3 SR e e e
A UL e

a . . . .
system x so as to achieve a desired concentration or expansion of the

0 T SRR

_ coordinates . Though still a forc;ng function behavior for PZO has to 3
3} be prescribed, the user is at least aware of its structure, that is, it must »
;g be composed of the product of two first partial derivatives and a second .
ti partial derivative. These considerations may be important in the adaptive f
r? coordinate systems. 1In other cases on may be prescribed arbitrarily. One
%Q such case has been treated numerically in Ref. 15. (Refer also to §3.)

E; ' §3.3 Morphology of A Solution aAlgorithm '
;? The discussion that follows pertains to the case when it is desired to E
Efﬁ generate the 3D curvilinear coordinates between two artibrary shaped smooth

lg surfaces. As is shown in Fig. 1, let the surface coordinates of the inner

F‘ body n = nB.: and of the outer body n = N, be thelgggg coordinates. Because f
r: of the right-handedness of the coordinate triple (£,n,%), the ordered pair

I? (z,E) is taken as a positive ordered pair on both the surfaces. Since both

k: the surfaces n = g and n = n_ are known either analytically or numerically,

ti so that '
-

T e T T T e T et Pt b o b B e e s s s e, et o e i e e i o e
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n=n

p P T =Igle8) s n=n, :x=1x (£0), (41)

and hence the needed partial derivatives with respect to £ and [ are directly

available at the surfaceg

Figure 1. Selection of coordinates on the inner and outer boundaries.

For the computation of rc in the field one must first note that the

coordinate [ may not, in general, satisfy the Beltrami's equation A(g)c = 0.

Consequently, r; must satisfy the equation

(2) @) L o2, (2 @)
de r+ G, (8, c)fC G, (k,“ + Xk, )? .

From this equation we devise a weighted integral formula

fc = I[fl(n)(r.:“)B + fz(n)(fcc)m]d; . (42a)
where
G 2g g
2 (2) (2) (2) 13 33
(x_.) Qs[——(k + k )n + ——r - ——r
~S¢' B, gll 1l 2 - g11 “EC g11 -EE
/G, g g
- ;—3 {%(}Lb - 3%(—/1:3) b Jp, e ¢ (42b)
and 11 G, G,
fl(ns) =1, fl(nw) =0, fz(nB) =0, fz(n”) =1 . (42c)

Referring to Fig. 2(a), we now solve Egs. (29) or (38) for each §{ = const.,

by prescribing the values of x, y and 2 on the lower curve C, and the upper

1
curve C2 which represent the curves on B and ® respectively. In Fig. 2(b) C3

and C4 are the cut lines on which periodic boundary conditions are to be imposed.

e SR
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(a) (b)

Figure 2.(a) Topology of the given surfaces. (b) Surface to be generated.

§3.4 Exact solutions

The following two examples demonstrate that the proposed set of generating

equations (27) or equivalently the set of equations (29) or (38) are consistent
and provide nontrivial solutions.

Example 1l: Isothermic coordinates on a unit sphere.

Let the surface coordinates of a unit sphere be denoted as £, g, where
the order (7,£) forms a right-handed system. Since our objective is to

provide isothermic coordinates which are orthogonal, we assume

x= Y(g) , y=f£f(f)cos £ , 2z = £(g)sin £ , (43a)
so that

f2 + wz =1 . (43b)

Calculating the metric coefficients and the surface Christoffel symbols

based on the assumed form (43a), we f£ind that the equations d;t = 0 and
@)
Azc = 0 are satisfied provided that

£ =y o+ £, (43c)

s
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e
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Eliminating § between (43b,c), we get
f'2 = (1-f2)f2 ’
which on integration yields )
£(5) = 2—‘*:3 . W) = l'eiz : (43a)
l+e 1l+e

It can be verified that when the solution (43d) is used in (43a) then the
resulting metric coefficients 93 and 933 are equal. Thus the coordinates
£,z are isothermic. The relations between the standard spherical polar

coordinates 9,¢'and the coordinates £,[ are
6
€=¢,C=2ntan5 .

Refer also to §5.1.1. .

Example 2: 3D coordinates between a prolate ellipsoid and a sphere.

We now con.ider the case of coordinate generation between an inner body

n = n, which is a prolate ellipsoid and an outer body n = n_ which is a

B
sphere. The coordinates which vary on these two surfaces are £ and [. A
curve Cl on the inner surface designated as ¢ = ;0 is

=T =Tei . erei . . .
x cosh n_ cos CO , ¥ =Usinh nB sin CO cos &, z =rsinh nB sin CO sin £

B
(44a)
Similarly the curve c2 corresponding to [ = ;o on the outer surface is
X = e cos ;o , Y =e sin ;O cos £ ,2=¢e sin CO sin £ . (44b)

In order to provide the solution of the present problem with coordinate

contraction, we consider Egs. (38) and assume

' £=E(E) , n=nm +n (45)
where E = 0 corresponds to £ = 0 and ne= EB corresponds to n = Ng- Thus
£(0) = O, n(ﬁB) = 0. Under the transformation (45), the only nonzero

Y 1 2 cas
components of puo are P11 and P22. Writing

D =2, 0m =40,

at dn
we have p1 __1a p2 1 de (46)
- ——: ’ n - —-T
11 A at 22 e an
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Based on the forms of the boundary conditions (44a) and (44b) we assume
the following forms for x, y, 2 for § = co:
%X = f(ﬁ)cos;o , ¥y = ¢(n)sin ;0 cos £, z = ¢(n)sin ;0 sin € . 47)

The boundary conditions for £ and ¢ are’

- - nao - - noo
£(ng) =tcosh n, , f(n,) = e ¢+ ¢(ng) =tsinh n , ¢(n ) =e . (48)

Using the expressions in (47) we calculate the various partial derivatives,
metric coefficients, and all other data as needed for the Egs. (38). On
substitution we get an equation containing sinzco and coszco. Equating to

zero the coefficients of sin2 ;0 and coszc we obtain

" _8 ,¢
8 Yo | (49)
" _ 8 ¢
¢' = 2] + ¢ ’ (50)

where a prime denotes differentiation with respect to n. On direct integra-

tions of Egs. (49) and (50) under the boundary conditions (48), we get

eBn(n)

£(n) = A +C,

o(m) = pen(M

[
where

nao nm
A =%(e -tTcosh nB)51nh nB]/(e ~Tsinh nB) .

B = (n_- &ntsinh nB)/(n°° - nB) '

n n

C =tle ®(cosh Ng = sinh nB) 1/ (e ® -rsinh nB) '

D =gsinh nB .
As an application, we take

£(E) = ak , n(n) = b(ﬁ-ﬁa)hP ,

#r amA n ava +tho naramaters nf the elliDSOid-
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where a, b and k.are constants. Thus

(n_-ng) (n-ng)

n(n) = ———— S
n_-ng

By taking a value of k slightly greater than one (k,= 1.05) we can have
sufficient contraction in the n-coordinate near the inner surface. For the
chosen problem since the dependence on f is simple, we find that the generated

coordinates between a prolate ellipsoid and a sphere are

X = [Aean(n) + Clcos ¢, y = DeBn(n)sin g cos £, z = DeBn(n)sin ¢ sin £

This example shows that the chosen generating system of equations (38)
are capable of providing non-isothermic coordinates between a prolate

ellipsoid and a sphere.

§4. GENERATING DIFFERENTIAL EQUATIONS BASED dN LAPLACE EQUATIONS

For the purpose of coordinate generation in either two or three dimensions
it has become quite popular, particularly after the publication of the TTM
methodz, to adopt a system of inhomogeneous Laplace' equations as the
generating system. The inhomogeneous terms are completely arbitrary and
seemingly there is no guidance from the analytical side as to how they
should be chosen. Because of this and due to other basic reasons it is
important to reconsider the formulation of the problem of coordinate
generation based on Laplace' system of equations from an analytical point
of view. The conclusions drawn from these considerations are that the set

of Laplace equations
Vx =0,1i=1, 2,3 (51)

are essentially the basis of the TTM method rather than the set of inhomo-

geneous equations

il = ptl, 22, % L i=1, 2,3, (52)
where Pi are the specified functions. The reason for this conclusion
is that a coordinate transformation from xi to any other system ii, both
satisfying the same boundary conditioné, automatically gives rise to the set
of equations (52) from (51). Thus as soon as the solution of the system of
equations (51) under the constraints of a body conforming boundary conditions

has been obtained a transformation
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=i -i, 1 2 3
x =x({x, x, x7)

can redistribute these coordinates in any desired manner.

To formulate the above noted ideas analytically, we consider the formula

2
for the Laplacian of a scalar ¢ in the curvilinear coordinate system,l 13
which is
2
2 ij @ r )
Vo = g (e - T, =4 (53)
ax” 3x I ax
if ¢ = xm is any curvilinear coordinate, then from (53) we obtain
PRt = gt (54)
g ij‘
1f ¢ = xm, where X is any of the rectangular Cartesian coordinate, Xy = X,
X, =¥, Xy = 2, then since szm = 0, we obtain using (53),
i3 82x 2r axm
g ——=+ (vVx) ——=0. (55)
9x 39X 9x
Taking (51) as the basic generating system, we get from (55),
i3 azxm
gj—i—'—.-=0. {56)
axaxd
Using the formulae stated in §2, we get[)xm = 0, or
Dx =0, (57)
Dy=0, (58)
Dz =0, (59)
where the operator Dis given by
D=G,3,, + G,3 _+G.3 _ +2G,3__ + 2G_3__ + 2G.3 _ . (60)
1°g¢ 2°nn 3°¢¢ 4°¢n 5°¢¢ 6 ng
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2

In two dimensions* Y3

1, = 0, so that D becomes

933 ©
D= 922855 - 2g128€n + gllann . (61)

Let % be another coordinate system which satisfies the same body con-

forming boundary conditions as the system xl, and let

~1 -1 2
= xl(xl, X, x3) , i=1,2, 3,

with
a.i
det (£ # 0 .
ax

Then an analysis similar to §3.2 shows that

m m 0x
[4
ax’ ail ax?
I X azx k ax 2.2
m m 23X 00X m 9 X

axtaxd  axax” ax® axd  ax* axtaxd

Using the last expression and the transformation law

i3 _ fn = 3x?

r
3% %"
in Eg. (56) we get
2
9 x 9x
r
kg . m2 +35 n P:n __%.= o, (62)
9x 9% ax
where
i 3j 2_1%
PQ - 9xX~ 9x 3 X , (63)
rn

3% o™ axtox)

and is symmetric in the lower two indices. If now in Eq. (55) we replace

xi by ii, gij by §iJ and introduce

*Refer to comment (ii) at the end of the paper.
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| then it amounts to the same thing as taking the non-homogeneous Laplace
equations (52) as the generating system.+ Thus we reach the conclusion that }
essentially Egs. (51) are the basic generating equations and that any redis- y

tribution of the solution of Eqs. (51) gives rise to Egs. (62).
Transferring the second term of Eg. (62) to the right hand side and using

the formulae developed in §2 which are applicable to all cocrdinate systems,

we obtain

3ax
g £ 2 £ £ £ [ m
I)xm _A-(c;lp11 + G2p22 + G3P33 + 2G4P12 + ZGSP13 + 2G6 P23)—:7 ’

~

94X

(64)

S

where X, = X0 Yo or z, and f)is the same operator as (60) in the new coordinate

o 7,17
L. system. In two dimensions, Eq. (64) gives rise to the familiar forms

3

< ~ - 1 1 - 1 - 2 - 2 - 2

b - = - - - - -

[ Dx = =(g,,5P); = 29),P15 + 911 P50 %g = (955F)) = 2915P)5 * 913 Pp0) %5

{65a)

= (= 1 _ = 1 - 1 _T p2 L oo 2 - 2 "
Dy = =(9,,P); = 29),P)5 + 901P50)0 Ve = (955P);) = 291,P5 + 91, P00y :

(65b) :
It must be noted that the preceding analysis guides one to a proper ‘

selection of the gquantities P:n for concentrating the coordinate lines in
the desired regions. This selection, though still arbitrary, at least
suggests that the chosen P:n should be something like a product of two first

and one second partial derivatives. This idea is important in the adaptive

coordinate systems, Furthermore, the preceding analysis also exposes for the

. . , . . oy L L
first time the existence of the cross derivative quantities Pr_1 (£ # n)

ﬁ ‘ which do not appear if one starts from the Eqs. (52) and which may be important
@ in non-orthogonal coordinates. For example, in two dimensions the quantities
& p*  are

$ m

[ 1 2 = 2=

q = - + 2E=n- + -

: R U A A R A

!
L]
J

2- - 2-
11 = (EE) “55 +2£€n5n€n + (nz) nrm '

<

‘Refer to comment (iii) at the end of the paper.
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1 2= R _
P22 (&-) Egg + 2¢-n €£n + (n=) gnn '
(o P2 = (6=2)%n. . + 26=n-n__ + (nm) %R
< 22 n EE En nm ’
P} = g-6-E (E=n- + n=£-)¢ =n-E
12~ “E°nUee £ Te=n' "en T "EMan

Pyy = Egﬁngs + (Ezna + nzé=)n__+

If £ = £(Z) and n = n(n), then writing

e, ot
dg dn
we get-
1 1 dx 2 1
P =->—,P =0, P =0,
11 A aE 11 22
2 1 de 2
P ==>—,P_=0,P =0,
22 edn 12 12
: 7
F! which are exactly the same as have been used in an earlier papez.l I5 nis
1 case, writing for brevity
B 1
s Py P Py =2
e
X Egs. (65) simply become
g_ Dx = -(gzszz + glleﬁ) ’ . (66a)‘
[
2 - - -
- Dy = -(g,,Pyz + g,.Qy=) . (66b)
: 227§ 11%'n
3: These equations do not contain the cross derivative terms Piz, Piz because
L’ T and n have been chosen to be functions of £ and n respectively.
3
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§4.1 Case of orthogonal coordinates

In general, for the generation of orthogonal coordinates it is not

necessary that the coordinate functions should also satisfy the Laplace

equations in the xyz-space. In this section after summarizing the basic

generating equations for the orthogonal coordinates we have studied the

effect of constraining the coordinate functions to be simultaneously harmonic.
The orthogonality conditions are

gij=0for1#3. (67)

Also, for orthogonal coordinates Egs. (54) simply become

Ve =2 D,
/g 1
h.h
2 1 3
Vo= = o = (68)
/g 2
2 1 2 by
v C=——§E (—h—) .
Vg 3
wherxe
2

= = /-__ = = H
LN R N TR PR R C I P R CRATECE R R

Proceeding directly from Eq. (55) and using Egqs. (67) and (68) we obtain

=x =0 ,m=1, 2, 3, (69)

where

I N PO N G O T s B
3 'h, 3¢ T an "hy 0 T30 h. aC

Note that the operator = and the Laplacian operator 's72 are related as

—-— 2
=9 = h1h2h3 Ve,

for a scalar ¢.
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Equations (69) are those fundamental equations which every orthogonal

g T NIRRT TR ’ DA Sani Atee &

coordinate system must satisfy. A program of calculation using Egs. (67) and

{69) along with the definitions of 9117 955 and 94, can be developed.

§4.1.1 Case of orthogonal coordinates using the Laplace equations

Case I: 3D coordinates.

If the generating system of equations is taken as

then from Egs. (68) we find that

hl = fz(gl;)f:;(&'n) ' h2 = fl(ﬂ,C)fB(S;n) ’ h3 = fl(rllC)fZ(QIC) '

where fl' f2, f3 are arbitrary functions of their arguments. Also the
generating system (69) for the Cartesian coordinates becomes
2
2’x_ ax_ #x_
952933 — 3 * 991933 — 3 * 919, —3 =0 .m=1,2,3,
22733 852 11733 anz 11°2 3

which because of (71) can also be written as

2 2 .2

2 0 xm 5 9 xm 5 d xm

fl(n,c) — + fz(E,c)-——ji + f3(£.n) 5 = 0, m=1, 2, 3.
] an 3¢

Case 1I: 2D coordinates.

For the case of 2D orthogonal coordinates the equations

V2£ =0 , V2n

]
o

[

with the use of Eqs. (68) yield

922 % %913

where a is a constant. The case a = 1 gives the corresponding isothermic

(70)

(71)

(72)

(73)

(74)

coordinates which are conformal. However, by a straight forward coordinate

transformation of the isothermic coordinates {,n to another coordinates

£,n we can have a coordinate distribution in which 522 # all' For, let

‘l‘; 1.‘.‘.. -
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be an arbitrary orthogonal transformation. Using the chain rule of differ-

entiation, we get

6 = EE, *+ 6on + 607 4 em ()% 4 26228 T

xx £ xx n £€ "x nn x En’x x

etc., etc.,

which when used in Egs. (74) along with the orthogonality condition

En +En =0

X X Yy
and the formulae
2- 1 23 \f -
VE=—="V\a../3., , (75a)
/E_BC 22" 711
2- 1l o |- -
Vin = ———_\lg /9y (75b)
/; an 117 722
2 -2 _ 2 2 _ 1 - _ - =
(€) + () ==—, (n) + (n) T 9 =979, ¢
I 922
yield the equations
= 2 3 - -
/g v = 2 (eNg /g)+i(eg/g ) =0, (76a)
sF £ 722" 711 - 117 722
2 an
/- 2 - - \-
g Vn= _3: (n-\’gzz/gn) + i_ (n= 911/922) =0 . (76b)
13 & an "

A study of Egs. (76) suggests that if £ is only a function of £, and

n is only a function of ﬁ, e.g.,

£(E) = J w(E)aE , n(n) = J dn_,
v(n)
then Egs. (76a,b) are identically satisfied by taking
\’611/522 = p(E)vin . (76c)

Thus
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and so the coordinates E,B are orthogonal but not conformal.

An important result from the preceding analysis is that if the orthogonal

coordinates are generated through the solution of the Laplace equations (74)

then there exists an infinity 2£ transformations § = g(E), n= n(ﬁ) in

which the ratio ig_g'groduct of a function of E and a function gg_i.

911795,
This result is not in general true for coordinates not satisfying the Laplace

equations.

§5. GENERATING DIFFERENTIAL EQUATIONS BASED ON THE RIEMANN TENSOR

In any given space there are endless possibilities for the introduction
of coordinate curves. Each chosen set of curves determines its own metric
components. For example, in a Cartesian plane besides introducing rectangular
Cartesian coordinates x, y, we also have endless possibilities for introducing
either orthogonal or nonorthogonal coordinate curves. However, as is well
known, there is a basic differential constraint on the variations of gij's
irrespective of the coordinate system. Since the curvature of an Euclidean
two-dimensional plane is identically 2zero, the basic differential constraint

on the gij's is

) -2 (fg; Py -2 (fg r?) =0 (77)
3’ R T 5 o, 1’ T3 g N2 '

where £,n are any arbitrary coordinate curves in the plane. Thus no matter
which coordinate system is introduced in a plane, the corresponding matrics
gij must satisfy Eq. (77). Equation (77) has also been used as the basic 1
generating equation for the generation of orthogonal coordinates in a plane .
In general, the Riemann curvature tensor Rrjnp defined as, 12,13

2 2 2 2
3 3 g, ] 9 g,
grp gjn _ Irn ?Jp)

T + n -
axJax" 8xr3xp axJaxP eraxn

1
Rrjnp = 3!

+ gts([jn.s] [rp,t] - [jp,s]lirn,t]) (78)

defines the components of the curvature tensor of any general space. If the
.space is N-dimensional, then the number of components Rrjnp are given by
2
N 2
12 (N'-1) .

= 2@V ma,,. (764)
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Thus for N = 2 there is one distinct surviving component stated in Egq. (77).

However, for N = 3, it has six distinct components

Ri2127 P33’ Raz23’ Fr2izr Rrozzr Risos -
If the 3D-space is Euclidean, then its curvature is zero, so that the six
equations

=0

Rij12 =0 v Rygpg » Ry3p3 =

(79)

=0

Ri513 = 0« Ryg3 » Ry3pz =

determine the differential constraints for the six metric coefficients gij in
any coordinate system introduced in an Euclidean space. These equations in

the expanded form are as follows:

829 azg 329
_ 21 12 22 ts _ _
P21z = 72 % Tgen ! 2 29 7 ([22,s](11,¢] - [12,s]{12,t]) =0,
n (80a)
a%g 2%g..  a°g
_ 11 13 33 ts - -
R1313 = ; > 2 3E3C + ) > + 29 ([33,5][11,t] (13,s][13,t]) =0 ,
¢ & (80b)
2 2 2
dg d g dg
_ 7922 23 33 ts _ _
R2323 = . > 3maL + ; > + 2g ([33,s][22,t] [23,s][23,t]) o,
4 n (80c)

2 2 2 2
99y 95, 993 39y

ts
Rp13 = Tomar - 3Eac - Ras t 2t 29 ([23.,51(11,e] - [12,5][13,8)) = o,

(804)
2 2 2
99, 29, 39,3 99, .

Ry232 © 3%ac T Tomac - etan * o2

29°%([22,s][13,t) - [23,s](12,¢t]) = o,

(80e)
2 2 2
9933 99y d49,; 29,

F1323 7 Tagan T Tanac ~ Tegac T T2

+ 2g%5([33,s][12,t] - [23,s](13,t]) = O,

(80f)

where [ij,k]) are the Christoffel symbols of the first kind defined in (8a).
Equations (80) are those consistent set of partial differential equations
which must always be satisfied by the metric coefficients gij' In the 3D case
Eqs. (B0) are six equations in six unknowns and, therefore, they form a closed
system of equations. 1In contrast, for the 2D case there is only one equation

(Eg. (77)) and three unknowns 91y¢ 932° 922 and therefore some constraints
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are needed to turn Eq. (77) (such as orthogonalityl8) into a solvable
equation. This author is not aware of any numerical solution of the complete
set of equations (80), though there are some possibilities of developing
solution algorithms using Eqs. (80) as the core equations. For example,
in the problem of obtaining the 3D coordinates for the configuration of
Fig. 1, one can judiciously choose 9117 913 and 933 based on the given bound-
ary data for the whole field and then solve Eqs. (80) for the remaining
coefficients 9527 937 and g12. It should also be noted that in any physical
problem, e.g., the Navier-Stokes problem, one only needs the metric coeffi-
cients and their derivatives (Christoffel symbols), which become available
after solving Eqs. (80). Nevertheless, for graphical and other purposes,
one also needs the functions x(¢{,n,g) etc.

To obtain the Cartesian coordinates on the basis of the available gij's,
we introduce the unit base vectors A, as

-~

A. = a,/Yg,. , no sum on i. (81)
~1 -1 ii
Let the components of Ai along the rectangular Cartesian axes be denoted as

u,, v., w,, so that
i i i

where
- x e T =z e
Uy = X VG 0 Vo =Y/ 0 Wy = 2 Ve, (82)
Uy = X /Y833 0 V3 = ¥y 0 Wy = 20 /Ve5y

Knowing ui, vi, wi, it is possible to evaluate the Cartesian coordinates

through the line integrals
f = I(ilwgll ag + 52¢922 dn + §3Vg33 dz) . (83)

The determination of Ui Voo wi is a separate problem which we now
consider. First of all using (8l1) in Eq. (Bc), we get a system of first

order partial differential equations

ceaibhia
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A, g,, & g, B 2
=i xl(Ll) ri. + Az(ﬁ) T, ]
ax? -7 934 3 -2 9, J &
1
g.. % A, 8g.. ]
+ A3(—13) ri. - == 1; , (84)
~2 955 I 9 ax

where, as before, there is no sum on the repeated index i. Equations (84)

form a system of 27 first order PDE'S in nine independent variables ui,

Vi wi. This system of equations is overdetermined and thus its solvability

should depend on certain compatibility conditions. According to a theorem
: 9 . s -
on the overdetermined system of equatlons1 . 1f the compatibility conditions y

hold then the solution of Egs. (84) exists and is unique. The conditions

i DEBIOATRES

222, 2,
m“ - = — - (85)
ax ax? ax7 ax
for all values of i, m, and j are the compatibility conditions. To prove (85)
we use Eq. (8c), which on cross differentiation yields E
32ai BZai ¢ r
- m~ - - — — =R imide ! (86) 1
= axax?  ax7ax e «
iA s
= where RQ. . is the Riemann-Christoffel curvaturelz tensor and is related - 4
with the Riemann's tensor R.,. .. Evidently in our present case RR. . = 0, ?j
ijke .imj ~

since the space is Euclidean. Inserting (8l) in (86) we find that Eq. (85)

e
»

are identically satisfied.

It is interesting to note that for a two-dimensional curvilinear coordinate 4

o .
¢ system there is no need to solve the system of equations such as (84). 1In b
<1 H

» this case the single differential equation with Gy=g
3 ) 79 ril 3 /S-riz
Fe o9 11 ) 1

implies the existence of a single function a(g,n) such that

3 a = :ﬁi ril , a = :!E riz . :
‘ & 9 no9n b
- B
i Consequently

!

) .
i. u1 = cos a, v) = ~-sin a, u, = cos (a=6) , v, = -sin{(a=-0) ,

] #'
p - 1
b
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where a is the angle made by the tanget to the coordinate

30

a clockwise sense with the x-axis, and

is known.

cos 6 =

§5.1 Case of orthogonal coordinates

(]

r;,=r._.=rI.,=20

r 9=

——
91577911922

§4.1. Under the constraint of orthogonality,

91192293

the set of equations (80) reduce somewhat. They are

We again return to the case of 3D orthogonal coordinates.

Refer also

o, [12,3) = [13,2] = [23,1]) = 0,

which are the lLame's equations.

3 1 %95, 1 %9 1 9911 3937
33(/—————— 3e )t an‘J~————- 3n el T T
911922 911922 911922
TP S F N I i | 3911 %933
s FY3 9 3z Jo o T4 2 Vo a In on
& 811933 911933 922911933
"¢ 2.1 ffggq NI 3922) , 1 9952 %933
: an ——— an L —— o ——— oL at
: 922933 922933 29717952933
f 2
L S _ 1% 1 ®u %92, 1 % %93
2 anag ~ 2 " an g, 3t 9,, 9% ! 2g,, 3¢ 3n '
2
g a2 ? 3 ? 3., @
- 22 1 %2, 1 %22 1 933 1 %91 %82
937 2 9 ‘922 3 93, ag’ 2g,, & 3 '
2
933 1833 1 M 1 M 1 P22 P
1] ’
9fan 2 93¢ 911 an 945 an 2922 13 an

’

line n = const. in

to

(87)

(88a)

(88b)

(88c)

(884)

(88e)

(88f)




§5.1.1 The case of isothermic coordinates.

Isothermic coordinates* in a surface embedded in a 3D Euclidean space
are those coordinates in which the metric coefficients 91, and 933 in the sur-
face n = const. are equal. That is, the element of length ds on n = const. is
given by
2 2 2
(ds) =99 [(ag)” + @)~ ],

n=const.

where £,f are chosen to be the surface coordinates. Setting
933 = 93y and 9,, = F(n)

in Egs. (88), we obtain the basic equations for gll,which are

K 3911) . 22 3911) , 1 (3911)2 =0, (89a)
13 951 9E 14 91 14 2P911 an
g
;%0—4L———3%10 =0, (89b)
YFdy,
g
IVEE Sipe s TRV O (89¢)
14 91 an
9g
T S IO (894)
13 911 an

It can easily be verified that the only solution of Eqs. (89c,d) is

919 = [a+P(n)]2f(5,c) , a = const. (90)
Thus from (89b)
2
Fim) = (58 . (91)
dn

Substituting (90) and (91) in Eq. (89%a), the differential equation for

*Refer to the comment (iv) at the end of the paper.
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£(£,Z) becomes

9,1 3f 3 1 af
ag(f ag) + 3C(f 3;) +2f =0 . (92)

In Kreyszig14 we have the result that if in a portion of a surface
isothermic coordinates can be introduced then that portion of the surface can
conformally be mapped onto a plane. Thus in effect the solution of Eg. (92)
provides that mapping function which conformally maps a surface onto a plane.
As a verification of the above conclusion, we verify that the function

2z
£ = ——5952—5 (93)
(l+e™ ™)
is a solution of Eq. (92). This function is related with the isothermic

coordinates on a sphere. Using the parametric equation of a sphere
x = [a+P(n)] cos 8, y = [a+P(n)])sin 8 sin ¢, z = [a+P(n)]sin & cos ¢

and writing

=}
£=¢l§=£ntan30
where 0 < ¢ < 2n and 0 < 6 < n, we obtain
2
9.. = g 4 (a+P) e 5
33 11 (1+ 2C)2
Thus the equations
_ (a+p) (1-€°%)
= ;s
1+e2C

_ 2(a+P)e;sin 4

Yy = ’
1+e2c (94)

- 2(a+P)eCcos £
1+e2;

represent a sphere of radius a+P{n) in terms of the isothermic coordinates

£,0 in the surface. Since P(n) is an arbitrary function of n, we have the
capability of prescribing a suitable function P(n) to achieve any sort of
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contraction or expansion in the field. It looks that the representation (94)

should prove useful in the computational problems associated with a sphere.

Comment (i) :
As a further justification for the consistency of the
has been shown below that these equations can be combined

for a surface z = z{x,y) in the well known form
-2 + =
uzxx Bzxy Yzyy 2HM ,

where

2H = kl+k2 = R/G3 , M= 1+p2+q2 rP=2,q9=2 ,

a= (1+q2)//§-, g = pq//ﬁh, Y = (1+p2)//§-.

First note the following definitions and identities:

set of Egs. (29) it

to obtain the equation

(i)

2
G3_gllg22-(912) IX=-p/V/b—d.,Y—"q/V/H' Z-l//—,
A, (x,%) = (1-X2)G, , b, (x,y) = -XYG, , A (y,y) = (1-¥*)G
1 V% = 39 1Y) = 39 Y.y = 3!
where (ii)
Al(a,b) = gzzagbg - glz(agbn + aan) + gllanbn .
Calculating z z z from 2 z substituting these expressions in
ATING Zegr Zgnr Fon TTOM T Fy SO aEng exp
Eg. (29c) while using the equations in (ii) and Egs. (2%a,b) we recover
Eq. (i) given above.
We now compare the equations obtained by 'rhomas6 with those of Warsill.
Thomas' equations in the present notation are
£x + 2pG3H//ﬁ =0, £y + 2qG3H//§ = 0 , where G3 = (xgyn-xnyE)ZM ' (iii)

which are exactly the same as Eqs. (29a,b) of this paper.

It must, however,

6
be pointed out that the derivation of Eqs. (iii) involves fovr steps:

(a) orthogonality of ¢ with £,n, (b) vanishing of the principal curvature of

t{-lines, (c) elimination of an arbitrary parameter (which may be zero),

A
(d) prescription of z(x,y) for c’-& surface to be generated. —
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Comment (ii):
In two dimensions another differential system is provided by a first order

Beltrami equation 20, which in the complex form is

£ - u(z,E)fz =0, (i)
where
f = f(zIE) ’
z =x + iy , zZ=x - iy , i = v-1 .
Writing

£(z,z) = £(x,y) + in(x,y) ; H(z,2) = ul(x,y) + iv(x,y) , (ii)

we obtain the following two real equations from (i):

1]

- BE. + , (iii)
n Yﬁy iii

X X

=
]

a&x + BEY ' (iv)

where

o= (-2 + V28, B=-2vb8 , v= [+w2 + V20, a=1-02 + VD) .

Note that

n
ot

2
ay ~ B

a+ y = 2(2-8)/8

A guasiconformal mapping becomes conformal when H = O, or equivalently
a=y=1, B= 0. The resulting equations are then the Cauchy-ﬁiemann

equations

and then f(z) is an analytic function in the domain D.
Equations (iii) and (iv) can be inverted so that only the partial

derivatives of x and y appear., Thus
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o= RN

xn = Bxg - ayC ) (v)
Yn = ng - Byg (vi)

For Egs. (v) and (vi) it is important to write a, £, Yy in terms of the metric
7,12

coefficients, which are ’

A

4Yg/12/g + (g); + 9,,)]
oty =gy + 9,0/,
= 3 2 2 4 /-
oy = [9; + 95, + {(gy; + 9,0 -4 + 8%)g} 17279 .

Comment (iii):

As is expected, Egq. (82) can be reduced to the form

9 x 9ax
-k2 kln; N (szr) mo_ 0
9x A%~ 9x
by using the formula
2_5§ -1 - -
0% _ p 3% _ i 3% 9%
axtax? 1T axP I ot px?
d X
in the expression for 1 5 However, for gaining a new insight into the
X~ Ix

structure of the redistribution terms it looks profitable to keep the form
(62) with B defined in (63).

Comment {(iv):

Generation of isothermic coordinates can also be achieved by the method
detailed in Ref. 14. Let xl and x2 be some sort of coordinates introduced
in a portion of the surface (for example from the subroutine developed by

. 2 . . . ,
Craidon l), and let xl, x2 be the desired isothermic coordinates. Then

i i "1 ~2
X = x {x ,x) .

i , .
Because of X" pejng isothermic, we have

922 ¥ 933

"-l

-~
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Using the transformation law for the covariant and the contravariant metric

tensor components we get

1

ox - jk 3 .
—i= iEJ —x}z, (l)
% 3 %
8x2 . .Jk dxl ..
—5 = -gi.c % (ii)

, 3% ) az

where
kL,
/g Ik
e11 =0, e22 =0, e12 = +1 , e21 = =1

From Egs. (i) and (ii) we find the second order differential equations

3 ij axk
—“— (5§ Ey =0, (iii)
L1 N
ax oxX
where k = 1, 2. Note that in the Eqs. (i) - (iii) the indices range over the

values 1, 2.

Equations (iii) provide two linear uncoupled equations for the deter-
. . . . . . .ij Lij
mination of the isothermic coordinates, since the values § I of g I are

known a' priori.

CONCLUSIONS

Three distinct methods of numerical coordinate generation based on PDE's
have been analyzed in detail. 1In the two newly propecsed methods, viz., the
methods discussed in §§3 and 5, some useful results have been obtained by
looking at the generating system of equations as a system of forcing differ-
ential relations among the metric coefficients gij' For example, in the
method of §3 and gij's are forced to satisfy Eqs. (27) (refer also to their
forms in Eqs. (20)). In the method of 85, the gij's naturally satisfy Eqs. (80)
since the space is intrinsically Euclidean. 1In the TTM method discussed in
§4 the generating Laplace or Poisson equations also amount to specifying a set
of differentia}'constraints on the gij's.

In the process of obtaining the above noted results a number of other

results and equations have been obtained which should be satisfied by all
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coordinate systems. For example, the orthogonal coordinates in an Euclidean
space must satisfy Egs. (69), (88), and the nonorthogonal coordinates must
satisfy Egs. (80), no matter which method is used to generate them. 1In
effect all these results provide enough material for proposing more efficient

calculation algorithms for the coordinate generation on a computer.
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NUMERICAL GENERATION OF THREE~DIMENSIOLKAL COORDINATES BETWEEN BODIES OF
ARBITRARY SHAPES

+ E:

Z. U. A. WARSI AND J. P. ZIEBARTH
Department of Aerospace Engineering, Mississippi State University,
Mississippi State, Mississippi 39762, USA

INTRODUCTION

This paper is devoted to the numerical solution of a set of second order
elliptic partial differential equations for the generation of three-dimensional
curvilinear coordinates between two arbitrary shaped bodies. The central
idea of the method is to generate a series of surfaces between the given
inner and the outer boundary surfaces and then to connect these surfaces in
such a manner so as to have a sufficiently differentiable threc-dimensional
coordinate net in the enclosed region.

The basic analytical foundation of the present method has already been
laid out by Warsi in £2 of Ref. 1. However, it is important to state here
that the proposed equations for the numerical solution form a consistent
set of second order elliptic equations which are a consequence of the
equations of Gauss2 for a surface. Additional constraints are then imposed
which, besides yielding the simplest form of equations for numerical
purposes, also preserve the essential geometric properties of the generated

surfaces.

Formulation of the mathematical model

To fix ideas, let it be desired to generate the coordinates between the
two surfaces designated as n = Ny (the inner surface) and n = N, (the outer
surface) respectively as is shown in Fig. 1 . The two coordinates which
vary in these two surfaces are then labeled as £ or I and { or K. The

surfaces n=n_ and n = n, are the known surfaces in which the Cartesian

B
coordinates r = (x,y,z) are given as functions of { and [, that is,

UL A S

are known either numerically or analytically. The method to be discussed
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= generates a surface for each fixed value of [ or K starting from a curve on
1: B and ending at the corresponding value of { or K on the outer boundary
rl surface. Refer to Fig. 1b.

ce
]

p——
et

(a)

e

surface

Figure lL(a). Coordinates £ and { on the given surfaces. (b) the generated
surface [ = const.

Referring to Eg. (18) in Warsil, we now impose the restrictions

SO /™ IS

1 1 1 1

- by = E;(2912T12 - 95Ty T 9T = 0 1)
5 i

- Byn = 570291, Ty, = 95Ty ~ 9 Tol) = 0 s (2)

3

# for §{ = const. 1In Egs. (1) and (2) A2 is the Beltrami's second order

- differential operatorl'z, and !

t 2

: 91 = X * yi * ‘2 ' (3a)

1

L

- 9)p = XgXp * Ye¥o * 22 (3b)
2 2 2

7 9pp = X+ Yt 2 (3¢)

fo G, = g9,,9,, = ( )2 (34)

2 37 911922 7 1927

3g g ag
1 1 11 Y 12
™ =26 92 37 * 925 - 250 (4a)




T T — R T o e P oy ar=s
A _ . S - = .-

3
3g ag dg
2 1 22 22 12
T2 26, l9yy =n- * 91205 - 2 50 ) (4b)
R R P i~ N "2z, )
22 26, 922 an 3E 912 T3 ¢ ¢ ¢
3g ag 9g
2 1 12 %9 11
Ty = 26, (o), @ =g~ -7 - 9y, 3¢ - (4d)
ag og
1 1 22
M2 7 36,922 o " %12 g ) (de)
dg dg
2 1 22 11
Tyo = 26, (90, 3¢ - 912 73 - (4f)

[+

By
that the constraining equations (1) and (2) are essentially a set of differen-

Based on the structure of the Christoffel symbols T, in Egs. (4) we conclude
tial constraints on the variations of the metric coefficients guB' Thus
under the constraining equations (1) and (2), the three equations for the
generation of the Cartesian coordinates x, y, z can be obtained. Below

we write the equations when it is desired to have a concentration or expansion
in the coordinates £ and n, (refer to Eqs. (38) in Warsil). For brevity of
notation we use the same coordinates (£,n,%{) either with or without

coordinate redistributions. The equations are

£x = XR , (5a)
£y = YR, (5b)
£z = 2R, (5¢)
where
L= 9223“ - zgnagn + gnarm + pag + Qan . (6)
X = (Yﬁzn - ynze)//E; ’ (7a)
Y= (xz2 - xezn)/@ . (7b)
, 2= (xy, - xnyc)//c—; . (7¢)
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3 T3 ) (8)

3
R = (ch + ch + Zz;)(glll‘22 - Zglzrlz + 95,711

. dg 3g 3g 3g 3g
3 _ 1 11 12 _ 11 it & IS 0 Y

M, = 29[65 =5 * Gg (2 i —n) + 6302 T ) . (9a)
O O LT s | %3 3912‘] 9b)

12 2g°5 3n 6 df 3" 3n I3 ag 4!

3g 3g og 4g ag

3 12 22 a2 23 a2
I, [G (2 —= T az'* + Gg ot G, (2 — 5 5% -] . (9¢c)
Cs = 955973 ~ 9339, * (10a)
Ce = 912933 ~ 911953 ¢ (10b)

and G3 has already been defined earlier in (3d).

A successful program of calculations based on the set of Egs. (5) - (10)
now rests on how effectively one can devise a calculation method for the first
partial derivatives r; = (xc, YC' z;) in the field. 1In this connection we
first note that based on the prescribed values SB(C,;), fw(ﬁ.c) the partial
derivatives with respect to E{ and 7 of any order can be evaluated on the
given bodies. Thus we must somehow connect the evaluation of fC in the field
with the partial derivatives in the surface. To maintain the intrinsic
geometrical properties of the f-lines in the field with the f-lines of the
inner and the outer boundaries, we consider the differential equations for
the surfaces n = const. Following the method in Warsil'3 we find that the
coordinates §, { in any surface (including the given boundaries) must satisfy
the equations
(2) (2) . (2), (2)

+ (G Az c)t = G, (k, +k In R (11)

933%¢g ~ 2913%¢; * 11T 2k +ky I

where the enclosed superscript (2) in Eq. (11) means that all the quantities

have been evaluated on the surface n = const. Also

2

62 = 971933 - (913) . (12a)
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{2) (2) (2)
Gz(kl+k2) = 9330 - 2913T + glls . (12b)
(2) (2) (2) _ _(2), (2) _ (2),
U= gy e T =R g S =y, 13
and
@ . x@, 3, 3,
where -
(2) _ _ Jo
X (y;z6 yEz;)/ G, . (14a)
(2) _ _ i~
Y = (xgzc xcze)/ G, » (14b)
(2) _ _
p4 = (ny5 xgy;)/ G, - (14c)
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It may be noted that (k1+k2)/2 is the mean curvature and S, T, U are the
coefficients of the second fundamental form of the surface n = const.
Based on Eq. (l11), we now formulate the following weighted integral

formula for the evaluation of rC in the field.

-~

r. = I[fl(“)(fc;’a *E,x 0 ) A, (15a)
where
G g g
2 . (2) . (2), (2)  2%13 33
(x, ), o= [ ("4k_“")n 4 ——— ¢ -
LT B, 9, 1 2 - 9, ~&C 9, -EE
G
2 ,(2)
-==8""0rl, .. (15b)
9, 2 .t'B,
and
fl(nB) =1, fl(nm) =0 , fz(nB) =0, fz(“n) =1. (15¢)

The functions fl(n) and fz(n) must satisfy the conditions (15c) and should
be chosen to reflect the effect of the coordinate redistribution function Q
appearing in Eq. (6). It is also to be noted that the coordinate { need not

in general satisfy the Beltrami equation. That is, in general A§2)c ¥ 0.
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Numerical solution of the equations

The numerical method used in this research for solving the system of
Egs. (5) is the method of finite difference using the point-SOR. First the
coordinates { and { for both the inner surface (n = nB) and the outer surface
(n = n,) are to be generated using the available x, y, z values for these
surfaces either analytically or by a computer program developed by Craidon.4
In this research we have used both the analytical methods where possible,
and also the subroutine in Ref. 4 to generate the given body surface coordin-
ates, with equal success. Three practical problems have to be resolved before
an effective solution algorithm for Eqs. (5) can be developed. They are:
(i) a specification of the functions fl(n) and fz(n) appearing in Egs. (15),
(ii) specification of the redistribution functions (concentration or expansion
functions) P and Q, and (iii) a method to obtain the same coordinates on the
inner and outer boundaries. We now discuss each problem in succession.
(i) Before discussing the specifications of fl(n) and fz(n) we may state
that each value like n = g and n = n_ is a parameter to start with rather
than an integer. The difference n_ - U’ is the most important difference
and is known as the "modulus of the domain." The determination of n_ - g is
a formidable problem in three dimensions but fortunately there is no need

for it in the case of numerical coordinate generation. Writing

Z=— (16a)

we find that the function fl defined in (15c) should be a function of Z only,

so that
fl(l) =1, fl(O) = 0, (16b)

and

fz(Z) =1 - fl(z) . (l6c)

In the present computations we have taken f1 and f2 as linear functiomsof Z,

that is

fl(i) = Z. (17a)

Other simple possibilities which have been tried are
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Though for convex surfaces the method of spherical projection seems to be
most desirable, we have for the present investigations, used the geometrical
method of first surrounding the inner body by a sphere of diameter equal

to the major length of the inner body. Next, each point (x,yB, zB) on the
inner body is projected to a point (x,ys, zs) on the sphere surrounding the
inner body. The correspondence between the inner and outer body is

then made by extending a straight line from the center through (x,ys. zs)

to a point (x_, y_., z, ) on the outer sphere.

A number of program runs have been made for prolate ellipsoids of varicus
thicknesses surrounded by sphere of large radii. Also a thin body of
revolution with circular sections, resembling the fuselage of an airplane,
surrounded by a sphere has been considered. These numerical results with

and without coordinate concentration are shown in Figs. 2-7.

1 1.1 1.

| S |

i W W

Figure 2. Inner body a thick prolate ellipsoid with major axis 2 and

minor axis

3 surrounded by a sphere of radius 4.

(a) Coordinate contours

for a section [ = const.

(K= 11) for all (f{,n) or (I,J) values,

(b) for a section £ = const.

(I = 1) for all (n,z) or (J,K) values.

In

both cases no contraction in 7,

K= 1.
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h Figure 3. Cases (a) and (b) of Fig. 2, with contraction in n, X = 1.05. 1
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= Figure 4. 1Inner body a thin prolate ellipsoid with major axis 1.02,

minor axis 0.201 surrounded by a sphere of radius 1.5. (a) Coordinate
contours for a section { = const. (K = 11) for all (£,n) or (I,J) values,
(b) for a section { = const. (I = 1) for all (n,?) or (J,K) values. In
both cases no contraction in n, k=1,
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Figure 5. Cases (a) and (b) of Fig. 4, with contraction in n, « = 1.02.
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Figure 6. Inner body a thin body of revolution with circular sections

having major axis 2 and minor axis 0.1313 surrounded by a sphere of radius
2.5. (a) Coordinate contours for a section [ = const.

or (J,K) values.

In both cases no contraction in n,

(K = 15) for all
(E,n) or (1,J) values, (b) for a section £ = const. (I = 1) for all (n,Z)

K=1,

-

"

Rz iiaisaes




TTITITRTY VY
‘. A ' -

T T VY
SR

11
—Y v Y Y T T | Y Y | I . T T
I=} -
p o J
q
-
Y' i
=
)]
4 { 1 1 1 ' i
=1 0 +1

Figure 7. Cases (a) and (b) of Fig. 6, with contraction in n, K = 1.005.

CONCLUSIONS

This paper has been devoted to the nrumerical solution of a set of elliptic
equations for the purpose of numerically evolving a series of surfaces
and the intersecting surfaces in arbitrary three-dimensional regions in
space. The most difficult part of such a program is the generation of
surfaces between any two given surfaces. This has been considered here
for thick and thin prolate ellipsoids and a body of revolution forming
the inner bodies and a sphere forming the outer boundary. Many successful
numerical algorithms can be developed using the proposed eqguations as
the core equations for providing the coordinates around a complete aircraft

and other aerodynamical shapes.
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